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ABSTRACT 

Rectangles for bipartite graphs are like triangles for unipartite 

graphs as both represent the smallest cycles in such graphs. 

Rectangle Counting is considered an important task in many 

bipartite network analysis metrics and is considered the core 

of computing such metrics, especially in cluster coefficient, 

bitruss, etc. However, there are few efficient algorithms to 

deal with this problem, especially in a large bipartite graph. In 

this work, we use MapReduce to enhance an algorithm to 

count rectangles in a large bipartite graph. The results show 

that our proposed MapReduce-based algorithm gives a better 

execution time than the existing algorithms, especially when it 

is applied in very large bipartite graphs. 

Keywords 

Rectangle Counting; Bipartite Graph; MapReduce; Large-

Scale Graph Analysis. 

1. INTRODUCTION 
In the last few years, the amount of bipartite graphs has 

increased noticeably. A bipartite graph is two disjoint sets of 

nodes where the nodes in the first set are connected only to 

the nodes in the second set. Because of the huge amount of 

computations required to process such graphs, sequential 

algorithms can’t be used to deal with such graphs due to the 

memory and CPU restrictions. Hence, developing parallel 

algorithms can be used to overcome this problem. Therefore, 

there is a need for new or enhanced algorithms based on 

parallel execution models such as MapReduce [1]. A bipartite 

network analysis uses rectangles counting as the core of 

computing such metrics; for example, computing cluster 

coefficient, bitruss, etc. 

In this paper, we first present an enhanced version of the 

sequential algorithm presented in [2] to count the number of 

rectangles in bipartite graphs. Then, we use a parallelized 

version of this enhanced algorithm to develop a novel 

MapReduce-based algorithm in the case of large bipartite 

graphs. This proposed MapReduce-based algorithm divides a 

bipartite graph into sub-graphs following by counting 

rectangles in each sub-graph, where the rectangles in the sub-

graphs are categorized into two different categories.  

We evaluate our proposed MapReduce-based algorithm on a 

local machine then on a cluster of seventeen machines using 

several datasets of different sizes. 

Section 2 discusses the related work. Section 3 explains how 

MapReduce model works. Section 4 defines the problem of 

rectangle counting. Section 5 presents our proposed 

algorithms. Section 6 shows and discusses experimental 

results. Finally, Section 7 discusses the conclusions of the 

paper and future work. 

2. Related Work 
The problem of counting the number of rectangles contained 

in bipartite graphs is somehow similar to the famous problem 

of counting triangles in unipartite graphs, as both problems 

aim to get the smallest cycles in such graphs. However, there 

are a relatively few research works for counting rectangles in 

a bipartite graph. Wang et al. [2] developed four algorithms in 

which two of them are sequential algorithms (In-Memory 

Rectangle Counting (IM-Rect) and I/O-Efficient Rectangle 

Counting (I/O-Rect)) and the others are parallel based 

algorithms (MapReduce Rectangle Counting (MR-Rect) and 

Partition-based parallel algorithm (PAR-Rect) based on 

Messaging Passing Interface (MPI)). Their experimental 

results showed that PAR-Rect is most efficient among the 

other three algorithms to count rectangles in a huge amount of 

bipartite graph. Some other works searches for rectangles in 

large graphs to solve bitruss decomposition problem, e.g. Peel 

algorithm proposed by Zou [3] in which it is similar to truss 

decomposition problem, with the difference that bitruss is 

based on rectangle while truss is based on triangle. This 

means that k-bitruss is a sub-graph of a bipartite graph in 

which each edge in the sub-graph contains   rectangles. 

3. MapReduce Model 
MapReduce is considered one of the most popular parallel and 

distributed models in the recent years [1]. Hadoop is an open 

source framework, and it is the most common framework for 

implementing MapReduce model [4]. MapReduce consists of 

three steps: map, shuffle and reduce. Map step is scripted by 

the programmer, and it is responsible for reading the input 

file, where each map reads only one line from the file to 

process the read data. This read data is divided into small 

chunks and these chunks are sent to the next step. The input 

and the output of the map step is represented as            . 
The shuffle step aggregates the output chunks of the map step 

into groups, where each group contains the values that have 

the  same  key,  then  the results of  aggregation step are sorted  
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by their keys and the results are sent to reduce step. The 

shuffle step is usually done automatically by the framework 

implementing the MapReduce model. In the reduce step, each 

reduce instance takes one group of the shuffle as input and 

apply the required processing on it, and finally the results are 

saved. Figure 1 shows how MapReduce model works. 

 

 

 

 

 

 

 

 

4. Problem Definition 
Table 1 shows the main terms used in this paper. Suppose that 

 (     ) is an undirected bipartite graph where   is a set of 

its left vertices,   is a set of its right vertices (i.e.      ), 

  is a set of edges between the left and the right vertices, 

  | |, and   | |. Also, let  ( )  *  (   )   + is a set 

of the neighbors of a vertex    , and let  ( )  | ( )| is the 

degree of vertex  . 

A rectangle can be defined as the smallest cycle exists in 

bipartite graph, denoted by  (         ) such that        and 

      , and it contains the following edges:   (   ) (    ) 
(    )     (     ) . An example of bipartite graph is shown in 

Figure 2. In this example   *                       +,   
*                 +, and   *(     ) (     ) (     ) (     ) 
(     ) (     ) (     ) (     ) (     ) (     ) (     ) 
(     ) (     ) (     ) (     ) (     ) (     )}. The number 

of the rectangles founded in   is five:  (           ), 

 (           ),(           )  (           )      (           ) 

We focus in this paper on the problem of identifying and 

counting rectangles in a bipartite graph. 

5. The Proposed Algorithms 
We proposed two algorithms to count the number of 

rectangles in a bipartite graph. The first one is a modified 

version of a sequential algorithm called In-Memory algorithm, 

denoted by IM-Rect [2]. The second algorithm is based on a 

MapReduce model which counts the number of rectangles in a 

large bipartite graph. The two algorithms are presented in 

Section 5.1 and Section 5.2, respectively. 

5.1 The First Algorithm 
In IM-Rect [2], each rectangle has two left vertices in  , so it 

counts the same rectangle twice from those two left vertices of 

the rectangle. For example, when applying IM-Rect on the 

graph in Figure 2, the two rectangles  (           ) and 

 (           ) are identified by IM-Rect, although they refer 

to the same rectangle. To overcome this problem, we present 

In-Memory++ algorithm (IM++RECT) which is an enhanced 

version of the IM-Rect in [2] and its pseudocode is in listing 

Algorithm 1. 

Table 1. Notations used in this paper 

Notation Description 

 (     ) Undirected bipartite graph 

  A set of left vertices in bipartite graph 

  A set of Right vertices in bipartite graph 

  
A set of edges between left and right vertices in 

bipartite graph 

  Number of left vertices 

  Number of edges 

(   ) Is an edge, where     and     

 ( ) Set of neighbors of a vertex   

 (    )  ( )   (  ) 

 ( ) 
Number of neighbors of a vertex   i.e.  ( )  

| ( )| 

 (    ) | (    )| 

     ( ) Set of left vertices    away two edges from   

  Number of partitions 

 ( ) Partition number of left vertex   

 (         ) Rectangle; (   ) (    ) (     ) (    )    

  (        ) 
1-partition bipartite sub-graph with    left 

vertices,    right vertices and    edges 

   (           ) 
2-partition bipartite sub-graph with          , 

          and          , where     

            Is a set of key and value 

 

Fig 1: MapReduce Example 
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Fig 2: Graph input 
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The proposed algorithm assumes that each vertex in the graph 

has a unique id based on its category (left vertices or right 

vertices). Let   be a total order of vertices, i.e.     means 

that  ’s id is greater than  ’s id. IM++RECT avoids IM-Rect 

problem by using the total ordering to count each rectangle 

only once. The algorithm uses two sets      ( ) and  (     ), 

where      ( ) is the set of the left vertices   , where    is 

two edges away from vertex   and  (    ) is the set of all 

common neighbors for both vertex   and   . For example, in 

Figure 2,      (  )  *           + and  (     )   (  )  
 (  )  *     +. 

IM++RECT consists of two parts. The first part finds 

both      ( ) and  (    ), for each     and      * + as 

shown in Lines 5-8. Then, in the second part, the number of 

rectangles is counted by iterating on      ( ) as shown in 

Lines 9-13. 

Algorithm 1: IM++RECT algorithm 

1      
2 for         do 
3            ( )   ; 
4        (    )             ,      * +; 

5       for      ( )   do 
6             for       ( )  * +   and          do 

7                     (    )   (    )  * +  

8                         ( )       ( )  *  +; 

9       for           ( )   do 
10            for     ,   (    )-   do 
11                 for     ,     (    )-   do 
12                             
13                       Print (   (    ), -     (    ), -); 

5.1.1 Analysis 
Lemma 1. IM++RECT algorithm counts rectangles in a 

bipartite graph correctly and only once. 

Proof. For each left vertex    , IM++RECT computes 

     ( ) only when     , for each     . Thus, it is 

guarantee that each rectangle in bipartite graph is seen only 

once. 

Lemma 2. IM++RECT algorithm takes  (  ( )  (    )) 

Proof. Line 1 takes  ( ), Lines 2-4 take  ( ) (Line 4 is 

defined as list of keyValue pairs), Line 7-8 takes  (  ( )) 

(i.e. in total, number of all possible two paths which equals to 

. 
( )
 

/   (  ( ))), Line 9 takes  (  ( )) (i.e. in total, the 

number of all possible two paths), Lines 12-14 takes 

 (  ( )  (    )). Therefore, IM++RECT takes: 

      ( )    ( )    ( ) (    ) 

        ( )    ( )  (    ) 

        ( )    ( )  (    ),   for              

Equation (1) 

Since  ( )   , then using Equation (1), 

      ( )    ( )    ( )  (    ) 

  (  ( )  (    ))  

5.2 The Second Algorithm 
Our second proposed algorithm is called Rectangle counting 

in Bipartite graphs using Partitioning (RBP) algorithm based 

on MapReduce model to count rectangles in a large bipartite 

graph. The main idea of RBP is to divide a large bipartite 

graph into   sub-graphs with equal number of left vertices. 

The algorithm is shown in listing Algorithm 2. Before we 

present the algorithm, we define some terms required to 

understand the algorithm. In our work, any rectangle can be 

categorized either as Type-1 or Type-2, where: 

Type-1: two left vertices      of the rectangle exist in the same 

partition, e.g.  (           ) shown in Figure 3. 

Type-2: two left vertices      of the rectangle exist in different 

partitions, e.g.  (           ) shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also, the partitioning of a bipartite graph can be one of two 

types: 1-partition or 2-partition. These two types are defined 

as follow: 

1-partition: 1-partition graph is a sub-graph of bipartite graph 

denoted by    (        ) for   ,   -; where the partition 

number of left vertex,  ( ), of each edge in such graph equals 

to   (i.e.  ( )   ). For example, for    , 1-partition sub-

graphs of the bipartite graph shown in Figure 3 are 
(           ) as shown in Figure 4. 

2-partition: 2-partition graph is denoted by     

(           ) for        , which is a sub-graph of a 

bipartite graph, with the partition number of left vertex,  ( ), 

of each edge in such graph equals to   or   (i.e.  ( )  *   +). 
For example, for    , 2-parition sub-graphs of bipartite 

graph shown in Figure 3 are (                       ) 

which are shown in Figure 5. In general, it is easily proofed 

that for any bipartite graph divided into   sub-graphs, there 

are .
 
 
/ 2-partition sub-graphs. 

When a bipartite graph is divided, Type-1 rectangles can be 

deduced from both 1-partition and 2-partition graphs, while 

type-2 rectangles can be deduced only from 2-partition 

graphs. Therefore, RBP divides a bipartite graph only in 2-

partition graphs as shown in the Map function in Lines 1-4. 

After finishing the Map step, MapReduce model combines 

each group of outputs of the map step that have the same key 

Fig 3: Partitioning of the graph presented in Figure 2 

for the RBP algorithm,      

            

               

   

Partition 1 Partition 2 

            

Partition 3 Partition 4 
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(i.e. combines edges in the same sub-graph) as mention before 

in section 3, then the reduce step counts the rectangles in the 

combined edges (i.e. 2-partition sub- graphs) as shown in 

Lines 5-24. 

Algorithm 2: The proposed RBP algorithm 

 Map   :   input        (   )   
1      for    ,     -  do 
2            for    ,     -  do 

3                  if   ( )  *   +  then 

4                        emit   (   )   (   )  ; 
 Reduce   :   input    (   )         

5      Parallel  for           do 
6                 ( )   ; 

7             (    )             ,        * +; 

8            for      ( )   do 
9                  for       ( )  * +   and          do 

10                         (    )   (    )  * +  

11                             ( )       ( )  *  +; 

12            Parallel  for           ( )   do 
13                 for     ,   (    )-   do 
14                      for     ,     (    )-   do 
15                                 (    ), -,     (    ), -; 
16                              if    ( )   (  )   then 
17                                    // Type-1 

18 
                                   if   ( ( )           ( )   )   

                                      and  (     )  then 
19                                          lock 
20                                                emit   (         )      ; 
21                              else 
22                                    // Type-2 

23                                    lock 

24                                          emit   (         )      ; 
 

The function in the Reduce step parallelizes the IM++RECT 

algorithm to increase the performance of the algorithm. We 

notice that Type-1 rectangles are duplicated in all 2-partition 

graphs, due to partition number of two left vertices (i.e.  ( )) 

belong to one site of 2-partition graph. For example, 

 (           ) in Figure 3 is a Type-1 rectangle,  (  )  
 (  )   , which appears in             shown in Figure 5. 

So, to overcome the duplication problem, Lines 16-20 deal 

with this problem by only seeing Type-1 rectangle once in 

   , where   equals to the partition number of left vertex of the 

rectangles (i.e.  ( )   ) and    is assigned to     (first 

condition) if a rectangle doesn't exist in the last partition. For 

example,  (           ) is identified only in     show in 

Figure 5. If a rectangle exists in the last partition (i.e.  ( )  
 ), then the rectangle is identified only in the last sub-graph 

(i.e.      ). For example,  (           ) is identified only 

in the last 2-partition graph    . Lock mechanism is used in 

Line 19 and Line 23 to deal with the critical section and to 

overcome race condition that occurs when multiple iterations 

write their results to the same file at the same time. 

5.2.1 Analysis 
Lemma 3. Type-1 and Type-2 rectangles are counted only 

once in a bipartite graph by RBP. 

Proof. RBP sees Type-1 rectangles only in the first 2-partition 

graph     (   ( ) and      ), or in the last 2-partition 

graph; if Type-1 rectangle is existed in the last partition 

( ( )    and      ). So, Type-1 rectangles are counted 

only once by RBP. 

On the other hand, Type-2 rectangles appear only one time in 

2-partition graphs. Therefore, RBP counts the rectangles 

correctly and only once in a bipartite graph. 

Lemma 4. Output of all map instances is (   )   (  ). 

Proof. Each map instance takes an edge (   ) as input and 

classifies it to 2-partition graph    , when the partition 

number of a left vertex   belongs to any of two site of sub-

graph (i.e.  ( )  *   +). Hence, any edge in a bipartite graph 

appears in     sub-graphs. For example, an edge (     ) in 

Figure 3 is shown in    ,    , and     as shown in Figure 5. 

Therefore, for   edges, they appear (   ) . So, the output 

of all map instances is: 

(   )   (  ) 

Lemma 5. Input of each reduce instance is  .
 

 
/. 

Proof. The probability that each edge belongs to a specific 

partition is 
 

 
. Therefore, probability of the existence of an 

edge in 2-partition is 
 

 
 

 

 
 

 

 
. The probability of   edges in 

2-partition is 
  

 
; so the input of each reduce instance is 

  

 
  .

 

 
/. 

Lemma 6. Reduce instance takes  (     (    )), where   is 

the maximum degree. 

Proof. Line 5 takes  (     running times of Lines 6-24), 

Lines 6-7 take  ( ), Lines 10-11 take  ( ) ( )     

(Assume   is the maximum degree, and in the worst case 

   ( ) and    ( )), Line 12 takes  (       running 

time of Lines 13-24), Lines 15-24 take  (  (    )). 

Therefore, reduce instances takes: 

                 (    ) 

                   (    ),  for     

i.e.                   (    ) 

                  (    ) 

  (     (    )) 

Fig 4: 1-Partition sub-graphs of the graph presented in Figure 3 
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6. Experimental Results 
In this section, we describe the set of experimental results 

conducted to evaluate our proposed algorithm with comparing 

it with PAR-Rect algorithm [2]. The experiment is divided 

into two sets. The first set is used to run the two algorithms on 

one machine, while the second set is used to run the two 

algorithms on multi machines. The characteristics of the 

datasets used in the experiments are shown in Table 2 [5]. 

6.1 Evaluation on a Single Machine 
In the first set of experiments, our proposed algorithm and the 

PAR-Rect were run and tested on a single machine with Intel 

Core i5 2.67GHz, 5.8 GB RAM and running Ubuntu. Apache 

Hadoop and MPJ Express (i.e. Messaging Passing Interface 

library for java) framework are running on this machine. The 

two algorithms were run on this machine with     . Table 

3 shows the results, where it shows that the performance of 

our proposed algorithm beats PAR-Rect algorithm. PAR-Rect 

can’t output the result of Youtube dataset, and gives an error 

(i.e. insufficient memory), when running in MPJ Express 

cluster configuration with one machine. On the other hand, 

RBP gives result for this dataset (12.35 minutes) as shown in 

this table. Therefore, it is clear that our proposed MapReduce-

based algorithm has a better performance than PAR-Rect and 

it can handle large graphs with a good performance even in 

small clusters. 

We also evaluated the effect of number of partitions on the 

running times of RBP and PAR-Rect algorithms on a single 

machine from   to    partitions using Writer dataset, as 

shown in Figure 8 in which it shows that RBP is more 

efficient than PAR-Rect. 

 

 

Table 2. Characteristics of the datasets used in the 

experiments 

Dataset 
# Left 

Nodes 

# Right 

Nodes 
# Edges 

# 

Rectangles 

Collaboration                             

Writer                               

Producer                                

Starring                               

YouTube                                  

 

 

Table 3: Running times of all algorithms on a single 

machine (min) 

Dataset PAR-Rect RBP 

Collaboration           

Writer            

Producer           

Starring            

YouTube    -          

 

 

Fig 5: 2-Partition sub-graphs of the graph presented in Figure 3 
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6.2 Evaluation on Multiple Machines 
In the second set of experiments, the proposed algorithm and 

PAR-Rect were run and tested on a cluster of 17 machines 

(one master, sixteen slaves); each one of these machines has 

Intel core 2 Quad 2.83GHz, 3.7 RAM, and running Ubuntu. 

Also, each machine runs Apache Hadoop and MPJ Express. 

We tested the two algorithms on those machines with the 

mentioned datasets. The results of experiments are show in 

Table 4. We applied PAR-Rect only on four datasets because 

it takes too long time to partition and distribute large graph to 

slave’s machines. As shown in Table 4, RBP beats PAR-Rect 

in counting the number of rectangles in large bipartite graphs. 

We also evaluated the effect of number of partitions on the 

running times of RBP and PAR-Rect on multi machines using 

Writer dataset with several values of     up to     , as 

shown in Figure 9. The figure shows clearly that RBP beats 

PAR-Rect in the performance. Also, the running time of RBP 

is almost constant when using different values of  . 

 

Table 4: Running times of all algorithms on a multi node 

(min) 

Dataset PAR-Rect RBP RB2PL 

Collaboration                

Writer               

Producer                

Starring                 

 

7. CONCLUSIONS and Future Works 
Since, rectangle counting is a fundamental problem in 

analyzing large bipartite graphs, we enhanced an existing 

sequential algorithm and proposed a MapReduce-based 

algorithm. Our experimental results showed that the proposed 

MapReduce-based algorithm gave better execution time in 

most cases than the existing algorithms especially for very 

large graphs. In the future work, we plan to implement a 

MapReduce model that uses MPI and develop more enhanced 

and efficient algorithms for extracting and counting shapes 

from very large scale bipartite and general graphs. 
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Fig 8: Running times of PAR-Rect and RBP on a single machine using 
Writer dataset with different   sizes 

 

 
Fig 9: Running times of PAR-Rect and RBP on multi machines 

using Writer dataset with different   sizes 

 

 

 

 


