
MJCIS Vol. 15 No.1 Jun 2019

Mansoura Journal of Computers and Information Sciences

1

Web Crawler Architecture over Cloud Computing compared

with Grid Computing

ABSTRACT

Web Crawler is considered as the core module of web search

engines. It should be designed to cover high percent of

Internet and adapt on scaling and in a distributed architecture.

The crawler architecture has an effect on the quantity of

fetched web pages in a determined time. Cloud computing is a

type of computing paradigm that is characterized by a set of

powerful points such as excitability, scalability, dynamism,

and resource provisioning on demand, where these features

are adding value in the crawler architecture. In this article, we

propose an architecture for the web crawler that is designed

over the cloud computing. The web crawler needs highly

intensive computation, storage, and bandwidth. These

resources can be provisioned by the cloud computing on

demand with superior flexibility in changing as in the

proposed architecture. We implemented and experimented the

proposed architecture over cloud computing and evaluated the

results of running. We also proposed another architecture

based on grid computing to compare the results of the

experiments over cloud computing with results over grid

computing to evaluate the cloud-based architecture. Cloud

computing has a higher performance than the grid computing.

The proposed crawler over cloud computing exploited the

features of cloud computing such as scalability, reliability,

and flexibility through a well-defined service based

architecture. Moreover, the results highlighted the

enhancement in performance of the cloud-based architecture

against the grid-based and monolithic.

Keywords

Web Crawler; Grid Computing; Cloud Computing;

Architecture; Grid-based Crawler; Cloud-based Crawler.

1. INTRODUCTION
The World Wide Web and technologies are continuously

growing, so this grown is useful for information search and

retrieval on the Web. The data on the web are from several

different sources [1]. The web is viewed as an information

universe. It is considered as public source. Each resource of

the web is associated with a URL. The size of the indexed

documents from the internet contains more than 4.7 Billion

indexed web documents in 25 September, 2016 [2].

Search engine typical design mainly consists of three stages

are the web crawler that creates a collection of web pages,

indexer that indexes the collection and searched. This search

engine design is a sequence design. There are many schemes

of web search engines that considered the crawler as the initial

step in the search engine. The cascade model of the search

engine, which operations are running in firm order crawling

first, then indexing, and then searching [3]. There is a huge

quantity of information that is available on the internet, so the

web crawler architecture should be developed efficiently to

download a large fraction of the Web [4]. Web crawler faces a

group of hitches to fetch all documents from the internet

which may not apply due to the characteristics of the web

such as dynamism and continuous modifications. The web

crawler needs stretch, dynamic and cooperative computational

storage space. Moreover, it needs a high bandwidth of

network to collect the most number of web pages [5].

The computing paradigm has been upgraded from the parallel

computing toward distributed computing, grid computing, and

then early to cloud computing. The distributed computing

provides solutions for large scale problems. The distributed

computing provides great pledge for using computer resources

effectively [6].

Grid computing term appeared in the middle of 1990s, it

means a suggested distributing computing structure for higher

engineering and sciences [7, 8]. Overall, Grid Computing

considered as a kind of distributed computing paradigm that

relies on standalone computers connected to a network by

Ethernet network interface.

Grid computing system contains one Master Node, a number

of Executor Nodes and Storage Nodes. Master Node

responsibility of connecting to other elements in the grid and

using a system for Load Management to distribute activities

over the executors. The storage Nodes are in concern with the

storing of inputs and outputs of the data necessary for tasks

[9]. Grid Computing is a software and hardware infrastructure

M. E. ElAraby
CS Dept. Faculty of Computers

and information, Mansoura, Beni-

Suef University

mohamed.elaraby@fcis.bsu.edu.eg

Sherihan M.
CS Dept. Faculty of

Computers and
information, Mansoura

University

sherihan@mans.edu.eg

Hossam M. Moftah
CS Dept. Faculty of Computers
and information, Beni-Suef

University

hossam.moftah@fcis.bsu.edu.eg

M. Z. Rashad
CS Dept. Faculty of

Computers and
information, Mansoura

University

mzrashad@mans.edu.eg

mailto:sherihan
mailto:mzrashad%7d@mans.edu.

MJCIS Vol. 15 No.1 Jun 2019

2

which provides pervasive, consistent, dependable, and low-

cost admission to high-end computation resources [10].

The Cloud Computing is a fresh computing paradigm in

Information Technology. The Cloud Computing permits

suitable, on-demand and rapid network access a pooled

collection of resources. These resources are configurable and

can be rapidly provisioned. They are dynamically scalable and

visualized platform as services, and provided in a

geographically distributed [11]. Moreover, other features of

Cloud Computing include fitness, elasticity, boundless

capacity, availability, and boundless capacity are important.

Many significant challenges are offered in Cloud Computing.

Numerous researches concentrated on the technical problems

which rose in providing and forming the Clouds and the

effects on business and consumers [12].

Cloud Computing paradigm has a pioneer responsibility in the

potential of World Wide Web services. There are numerous

technology challenges in the Cloud community for fitting its

vision to actuality. Moreover, the cloud computing has issues

related to the management to introduce scalable and elastic

(stretchy) service platforms built on demand and evolving

Cloud combine technologies and architecture [13]. The issues

that face migration of information systems to Cloud

Computing are available, customization, integration and

interoperability.

There are various system architectures that are used to

develop software. The software architecture design is the

system structure that involves the modules of software, the

properties of visibility for those modules, and the associations

between them [14]. Architecture of the software refers to the

overall structure of the system software, managing

complication and rising reuse, through the breakdown of a

system into its high level subcomponents and their

interconnections [15].

Software architecture differs based on the nature of computing

paradigm that is used to deploy it where each computing

paradigm has its nature and features that are different. If the

software is deployed into a Cloud computing, then the

software architecture should be described differently to utilize

the Cloud features. Cloud features that should be utilized are

reliable, availability, scalability, total cost of ownership and

ease of deployment [16]. The software architecture over

Cloud is the components and sub-components including

security, layers, and the whole organization of the system on

cloud computing [17].

If the same software is deployed into a grid computing, then

the software architecture should be described differently to

adapt the grid computing nature. Grid computing

characteristics are that the distributed ownership of resources,

each resource have its access policy, mechanism and cost.

These characteristics in addition to architectures that are based

on modular and component to enable portability ease of

development, extensibility, and interoperability of

independently developed components [18].

The motivation of this paper is to exploit the flexibility,

scalability, geographical distribution and other capabilities of

cloud computing to design a web crawling architecture

outperforms any web crawler architecture on other computing

paradigms. The paper contribution is the proposed web

crawler architecture. The proposed web crawler is designed

built on the micro-service and service oriented that can be

deployed on cloud computing environment and utilized the

capabilities of the cloud computing such as scalability and

flexibility. Also, the power and fitness of the proposed web

crawler gained from its architecture and cloud computing as

an environment for running that has no limitation in its

resources and scalable.

The paper is organized in this way. Section 2 is related work

which introduces the related researches in the web crawling

architecture. Section 3 is Proposed Web Crawler

Architectures that is compose of two sub-sections one of them

presents the proposed architecture using grid computing and

the other presents the proposed architecture using cloud

computing. Section 4 is Experimental results and analysis that

are also consisted of two sub-sections one for grid-based

crawler performance and the other for cloud-based crawler

performance. Section 5 is the Conclusions and the Future

work.

2. RELATED WORKS
The software architecture is the primary factor which has a

direct effect to boost customization, availability,

interoperability, integration and coverage of WWW. There are

numerous researches in the topic of crawling specially design

an architecture for the web crawling. From the time when the

initiate web crawling system proposed by M. Gray in 1993,

this crawling system was called “World Wide Web

Wanderer”, to navigate the internet and gather the web sites

the same as an automatic web crawl, spider, or agent [19].

The proposed web crawler overcome and outperform the

previous web crawlers in its architecture which it is designed

based on the service oriented and micro-services that can be

deployed on cloud computing and utilized the capabilities of

the cloud computing such as scalability and flexibility. The

design of the previously proposed crawlers did not touch the

service oriented and micro-services architecture as these

architectures are novel methodologies in software

development that are invited to adapt with cloud computing

migration. Any proposed web crawler has a limitation in the

expandability due to the limitation in the infrastructure that is

prepared to run the crawler. But in the proposed web crawler

in this paper, its power and fitness gained from its architecture

and cloud computing as an environment for running that has

no limitation in its resources and scalable.

Jonathan M. Hsieh [20] explained the design architecture,

execution, and assessment of the extensible web crawling

model. He stressed on designing a filter language and using

document and filtering partitioning for scaling his model

implementation. He stated that the system has scalable, low-

latency, and high selectivity.

There are research groups that have a set of researches in the

distributed computing field. There are research groups that

created tools, libraries and middleware. They allowed the

collaborative use of physically distributed resources combined

for acting as one unit great platform for executing of

distributed and parallel software. This computing approach

has another name as Internet Computing, Meta-Computing,

MJCIS Vol. 15 No.1 Jun 2019

3

Global Computing, Scalable Computing, and latterly as Grid

Computing [8, 21, 22].

Data created in numerous sources in the World Wide Web are

enormously growing. Finding related data without the

announcement overload is still impossible with current

technologies. Although some hopeful work in architecture that

based on pushing to solve this problem, they drop to meet the

need in the big data. Mehmet A. Akyol et al. proposed an

architecture for context aware notification for people to

discover needed data at its most valuable state [23].

Also, Web crawling topic has numerous research studies

developed over grid computing. Some crawling architectures

are designed based Grid Computing which its goal is to

enhance the web crawling performance. K. Cerbioni has

designed a focused crawling architecture on the grid

computing, which this architecture designed for medical

information [24]. This architecture provides adaptable

services to retrieve medical information domain. Cerbioni’s

architecture is designed to handle the retrieval service for

individuals which they are permitted to use the extremely

distributed computational capability of the grid computing,

and remove the central repository need. His architecture is

presented in a three tier models, and highlighting the core of

the system that is placed on the middle layer.

Also, M. Ben-Mubarak proposed a system for crawling based

on a multi-agent system that improved the system efficiency

[25]. He improved his system efficiency by utilizing a

multiple agent system that based on crawling system. He

proposed a search engine based on this crawler which this

search engine is specifically for grid services. A. Guerriero et

al. proposed a model of little cost web crawler for distributed

environments and built on an effective URL allocation

algorithm [26]. In their proposed architecture, the crawling

modules are analyzed and have rules to be followed by the

crawlers for maintaining the robustness and load balancing of

the system as searching in the web. Their architecture is based

on a grid computation paradigm and clustering.

J. Song et al. proposed an architecture to crawl the deep web

called OGSA-DWC, which their architecture is designed for

grid-based middleware [27]. Their middleware enable the

developers to implement a system of a grid-based deep web

crawling without needing to know how to use distributed

computing resources. B. Barla Combazoglu et al. presented an

architecture and implementation details of a search engine that

is specifically for south Eastern Europe (SE4SEE) [28]. Their

architecture is built on the grid computing.

Peter Mika proposed a part of a web crawler called a semantic

web component over Cloud [29]. However, he didn’t present

the architecture design for the web crawling system. In 2015,

Mehdi Bahrami proposed architecture design for the web

crawling system that based on Cloud Computing [30].

Mehdi’s architecture is based on the Map-Reduce model. His

suggested web crawling architecture fetches web pages by

distributed proxies. Every proxy keeps the fetched web

documents in “Cloud Azure Table” and stores the enormous

amount of formed and unformed data in “Azure Blob”

storage.

3. PROPOSED WEB CRAWLER

ARCHITECTURE
Web crawler consists of many operations that sending

requests and receiving responses as web documents. Then, it

analyses these web documents to obtain URLs from web

documents and puts un-visited URLs in the Queue; every

URL in the queue is fetched and so on. The goal is to gather

many documents and gets URLs from the documents to gather

a huge storage area of URLs in addition to documents on the

web. The steps execute huge numbers of processes and spend

a long time period.

It is important in describe the web crawling phases. Fig 1

show the phases of web crawling according to the native

crawling. Native crawling consists of the next phases: Picking

URLs “seed” as an first stage, storing the seed URLs in URL

queue list using the “DNS Resolver” and cache, crawling the

web documents by using the HTTP fetch from the Internet,

putting the fetched document in the pages storage area,

obtaining hyperlink of URLs from the crawled document,

removing repeated URLs in the obtained URLs, cleaning the

obtained URLs and storing the filtered URLs into “URL

Queue”.

Algorithm 1 list the steps of native crawling. The input of the

native crawling is a set of URLs that are the seed URL for

crawling. The steps of the algorithm are sequential and there

is a set of repeated steps until the end of the URL queue or

stopping the crawling process manual. The complexity of the

native crawler is O (𝑛2), where n represents the number of

URLs that will be fetched by the crawler.

Algorithm 1. Native Crawler Algorithm (Breadth First)

Input:

Seed URLs: URLs = {𝑢𝑟𝑙1, 𝑢𝑟𝑙2, …,𝑢𝑟𝑙𝑛}.

Outputs:

Set of Web Pages

Steps:

URL_Queue = URLs

URL_Visited = Ø

while URL_Queue is NOT Empty do

 URL ← Dequeue from URL_Queue

 P ← Web page of URL fetch from the web

 URL_Visited = URL_Visited ⋃ URL

 RP = RP ⋃ P

 Parse P to extract Extracted_URLs and Content

 for each url ∈ Extracted_URLs do

 if url ∉ URL_Queue AND url ∉ URL_Visited then

 URL_Queue = URL_Queue ⋃ Extracted_URLs

 end if

 end for

end while

The next two sections are to show the proposed architecture

for web crawler. The first section shows the architecture using

the Grid Computing paradigm, and the second section shows

the architecture using the Cloud Computing.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22A.%22&searchWithin=%22Last%20Name%22:%22Guerriero%22&newsearch=true

MJCIS Vol. 15 No.1 Jun 2019

4

URL Queue

Fetching

Page

URLs

Extractor Pages

URLs

Filter
URLs

WWW

Fig 1: Web crawler stages

3.1 Proposed Architecture using Grid

Computing
Grid Computing enables to utilize the remotely computational

resources available in many computers that are regionally

distributed. So, using Grid Computing in this proposed

architecture suggested that distributing the crawler activities

into multi-threads and using many separated PCs to run

threads in balancing approach for distributing the work and

minimizing the consumed periods in crawling. Fig 2 shows

the diagram for the proposed web crawler architecture

utilizing grid computing.

This proposed architecture is based on distributed and parallel

processing. Its aim is to reduce the total period time for

gathering the same quantity of pages, and effective use of the

computational resource. The important classification of Grid

Computing is computing grid and utility grid. Grid system

requires powerful computing processing and could be

distributed into sub-tasks that can do in parallel manner and

merged to return the needed outcome. Branched tasks are

accomplished in discrete computers to increase execution time

efficiency and resource consumption. Utility Grid System is a

set of computing resources that are virtual so that many users

submit individual programs to this group. It gets the benefits

of maximizing resources usage, workload balance, and best

processing time for each application [31].

In the diagram of Fig 2 and Algorithm 2, the inputs are the

seed URLs and define nodes that are connected in the grid as

executors. The web crawler grid program produces a set of

GThreads. This set dispatched to Alchemi Manager System

[32] that spreads threads over access executor’s nodes joined

the manager, and the outcomes are restored to the manager

system. Algorithm 2 has a function that is executed in the

nodes which the grid managed passes the GThread with a

URL to crawl it and extract URLs and return them to the

manager to add the new URLs in the queue. The complexity

of this algorithm is O (n (n/m)), where n is the number of

crawled URLs and m is the number of nodes in the grid.

Algorithm 2. Crawling Algorithm on Grid Computing

Input:

Set of nodes in Grid: N = {𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, …, 𝑛𝑜𝑑𝑒𝑚}

Seed URLs: URLs = {𝑢𝑟𝑙1, 𝑢𝑟𝑙2, …,𝑢𝑟𝑙𝑛}.

Outputs:

Set of Web Pages

Steps:

URL_Queue = URLs

URL_Visited = Ø

URL_Gthreads = Ø

c = 0

while URL_Queue ≠ Ø do

 URL ← Dequeue from URL_Queue

 𝑖 = c % length(N)

 c = c + 1

 URL_Gthreads = URL_Gthreads ⋃ (𝑛𝑜𝑑𝑒𝑖, 𝐺𝑡ℎ(URL))

 Extracted_URLs = 𝑛𝑜𝑑𝑒𝑖.assign(𝐺𝑡ℎ(URL)), 𝑛𝑜𝑑𝑒𝑖∈N

 URL_Queue = URL_Queue ⋃ Extracted_URLs

end while

function assign(Gthread 𝐺𝑡ℎ(url))

Start procedure

 𝑝 ← fetch (𝑢𝑟𝑙)

 𝑝: Web page of URL fetch from the web

 RP = RP ⋃ 𝑝

 RP: repository of web pages

 URLs ← extractURLs(𝑝)

 for each url ∈ URLs do

 if url ∉ URL_Queue AND url ∉ URL_Visited then

 URL_Return = URL_Return ⋃ url

 end if

 end for

 return URL_Return

end function

MJCIS Vol. 15 No.1 Jun 2019

5

WWW

Crawler

Grid App.

Pages

URLs Seed

URLs

Alchemi

Manager

Threads &

URLs Fetching

Page
URLs

Extractor

Executers

URLs

Crawler

DB

Fig 2: Proposed web crawler architecture on the Grid Computing

3.2 Proposed Architecture using Cloud

Computing
In Fig 3, the diagram displays web crawler design over Cloud

computing. The design is built on using virtual machines

instantiation, and the web crawling processes are executing on

one VM (virtual machine) instance. There is a master copy

called Machine Image that prepared as a pattern for a full web

crawler works independently. The page/document Storage and

the URL Queue were designed as a central database for every

crawling VM instances. The crawling VM instances are

harmonized using the centralized database, and all crawler

instances instantiated in the identical region in the cloud

environment.

Because the geographical distribution for cloud computing,

we proposed another architecture design as displayed in the

diagram of Fig 4. It is alike of the previous design, although

the VM instances are spread over various regions available in

the cloud computing. This design gains the geographical

distribution characteristic in the Cloud computing. Each

region contains several web crawling VM instances and every

region instances have a common document repository and

URL queue in this region.

We proposed another architecture design for web crawler

which create crawling instances in various regions, although

the storage of document and URL queue are designed to be

central in one region as displayed in the diagram of Fig 5 and

Algorithm 3. This architecture design makes all web

documents placed in one region for processing.

The storage used for the web document is “elastic” storage. It

can be expanded and represented in various forms. It can be in

“No-SQL (Non-Structured Query Language)” or “SQL

(Structured Query Language)” form.

Algorithm 3 lists the steps of the crawling in each crawling

instance, which the inputs are seed URLs and define the

crawling instances (virtual machines). These steps are

executed in each instance as it is, and the coordination

between the virtual machines achieved through the shared

queue and memory in the cloud computing. The complexity of

this algorithm is O (𝑛2/𝑙), where n represents the number of

URLs that will be fetched by the crawler, and 𝑙 represents the

number of virtual machines.

By comparing the algorithm of the crawler over grid

computing versus the proposed crawler over cloud computing,

it is noticed that the time complexity of the first one is greater

than the time complexity of the second. The crawler over grid

computing divides the time of fetching and parsing but there

is a centralized processing executed by the master node in the

grid. But in the cloud computing, all processing is divided on

all crawling instance as the crawling strategy is fully

distributed without central control, so the proposed crawler

over cloud achieves better enhancement.

Algorithm 3. Crawling Algorithm on Cloud Computing

MJCIS Vol. 15 No.1 Jun 2019

6

Input:

Set of virtual machines: VM = {𝑉𝑀0, 𝑉𝑀1, …, 𝑉𝑀𝑙}

Seed URLs: URLs = {𝑢𝑟𝑙1, 𝑢𝑟𝑙2, …,𝑢𝑟𝑙𝑛}.

Outputs:

Set of Web Pages

Steps:

URL_Queue = URLs

URL_Visited = Ø

In each VM:

while URL_Queue Not empty do

 𝑢𝑟𝑙 ← Dequeue from URL_Queue

 𝑝 ← fetch (𝑢𝑟𝑙)

 𝑝: Web page of URL fetch from the web

 RP = RP ⋃ 𝑝

 RP: repository of web pages

 URLs ← extractURLs(𝑝)

 for each url ∈ URLs do

 if url ∉ URL_Queue AND url ∉ URL_Visited then

 URL_Queue = URL_Queue ⋃ url

 end if

 end for

end while

 VM Crawler

Region 1

URL
pages

 VM Crawler

Region 1
 VM Crawler

Instance

Document Elastic Storage

URL Queue

WWW

URLs

Fetching
Instances

Fig 3: Multiple Crawling instances on the Cloud Computing

MJCIS Vol. 15 No.1 Jun 2019

7

 VM

Crawler

Region 1

URL
pages

 VM

Crawler

Region 1

 VM

Crawler

Instance

Document Elastic

Storage

URL Queue

WWW

URLs

Fetching
Instance

s

 VM

Crawler

Region 1

URL

pages

 VM

Crawler

Region 1

 VM

Crawler

Instance

Document Elastic

Storage

URL Queue

URLs

Fetching
Instance

s

 VM

Crawler

Region 1

URL
pages

 VM

Crawler

Region 1

 VM

Crawler

Instance

Document Elastic

Storage

URL Queue

URLs

Fetching
Instance

s

Region 1

Region 2

Region n

Fig 4: Geographical distributed crawling on the Cloud Computing regions

 Region 1 Region 2 Region n

 VM Crawler

Region 1

VM Crawler

Region 2

VM Crawler

Region n

URL

URL

URL

page
page page

 VM Crawler

Region 1 VM Crawler
VM Crawler

Region 2VM Crawler
VM Crawler

Region nVM Crawler

Document Elastic

Storage

URL Queue

WWW

Fig 5: Geographical distributed crawling instances and centralized storage

MJCIS Vol. 15 No.1 Jun 2019

8

4. EXPERIMENTAL RESULTS AND

ANALYSIS
The experiments in this paper are initiated by selecting URL

seed for the web crawling process in Grid-based and Cloud-

based architecture, where the selected seed is the URL of

“MIT Education” web site http://www.mit.edu.

The aspects influences the performance of any web crawler

are the quantity of crawled web documents, the number of

collected hyperlinks to others web documents, the number of

accessed host servers, the response time for documents

fetching from the host server, and volume of

transferred/fetched web documents. So, we will quantify all

these aspects only in this proposed crawling architecture over

Cloud computing. The consumed time is measured for web

crawling architecture over Grid computing and Cloud

computing for comparison between their performances. A

definite amount of documents in various cases were executed

to crawl 50, 100, 150, 200, 250, and 300. Their consumed

time in the crawling was assessed using the unit of second.

In the Cloud-based architecture, the number of recent URLs

obtained from fetched documents, and number of host servers

called are measured. Accessing same host server twice in a

tiny time period will affect the response time of the crawl,

because the servers keep client address IP. If the host server

received multiple http request in a small period, then the

server will stay http response for some time. This response

delay influences the calculated crawl time. Also, response

time needs to be measured in second. Because the size of

document data influences the crawling rate of the web

crawling, the pages’ sizes downloaded were measured in

“KiloBytes” of all crawled web documents. Evaluation was

made in six occasions of running 50, 100, 150, 200, 250 and

300 pages.

4.1 Grid-Based Crawler Performance
In the Grid-based architecture, the experiment done on an

environment consists of five personal computers connected

with an internet ADSL line with speed 1 Mbps in an Ethernet

LAN network its speed 10 Mbps. Each computer contains a 1

GB Random Access Memory and Intel processor 2.3 GHz.

This environment to be a Grid computing needs a Grid

computing framework to organize the computing resources, so

we use Alchemi framework. Alchemi framework is an open

source software framework that lets to collect

the processing power of connected computers into a simulated

super-computer and to develop software applications to

execute on the Grid computing [32]. Alchemi components are

Alchemi Executor and Alchemi Manager. Alchemi Executor

is a program that is installed on all computers to be executor

nodes. Microsoft .NET framework 1.1 should be installed on

all executors before install Alchemi executor program.

Alchemi Manager is a program that is installed on one

computer to control all execution nodes connected to it. SQL

Server is installed on Alchemi manager node to store the

identifier numbers and details of executors, and to store

identifier numbers and threads status

(running/completed/failed) mapped with the executor id.

The web crawler application is running on Alchemi manager

node. Numerous cases have been conducted on the executor

nodes and fetched 50, 100, 150, 200, 250, and 300 web

documents. As showed in Fig 6, by raising the executors in

the grid, the time value reduces in a linear mode.

The experiments using grid computing test bed composed of

parameters the first one is the number of nodes in the grid

computing, and the second one is the number of pages that

should be crawled in the grid. As in Fig 6, the horizontal axis

is the number of crawled pages, the colored lines each one

represents a case of running the experiment with a specific

number of nodes executors, and the vertical axis represents

the time spent to complete the crawling processes. The

experimental results show that the time of each case is

decreased by increasing the number of nodes in the grid. By

increasing the number of nodes in the grid the time

enhancement decreases. In case of 300 pages the time of

crawling in 1, 2, 3, 4 and 5 are 2167.2, 1080.6, 810, 533.4 and

434.4 respectively. The decreasing rate in these experiments

are also decreased the decreasing rate of 1 and 2 nodes are

2.01, 2 and 3 is 1.334, 3 and 4 are 1.5186, and 4 and 5 are

1.22. The decreasing rate decrease till become one that means

there is no enhancement in the time.

Fig 6: Running the proposed web crawler over Grid

Computing

4.2 Cloud-Based Crawler Performance

In the Cloud-based architecture, multiple crawler instances are

running in a distinct virtual machine created on Cloud

computing. Amazon EC2 is used which it provides a broad

collection of instance classes [33]. Instance “t2.micro” is

selected for instantiation from Amazon EC2. This instance is

comprised of an “Intel Xeon” family CPU (its speed up to 3.3

GHz). “Intel Turbo” one GB memory and “Amazon EBS

Storage”. The network bandwidth in this instance is small to

average. We selected US East (N. Virginia) as the running

region while instantiation and the internet speed through this

experiments were 130Mbps to 200 Mbps.

The used database was existed on “Amazon Relational

Database” Service (Amazon “RDS”). This service is simple to

expand the database and makes for emphasis on the business

and applications [33]. Database was “MySQL DB” instance,

http://www.mit.edu/

MJCIS Vol. 15 No.1 Jun 2019

9

which it was connected remotely by “MySQL Query

Browser”. Database instance was “MySQL DB” on

“db.t2.micro” instantiated in that region of the crawlers in

“US East - N. Virginia”.

This experiment is comprised of two parameters as in the

grid-based which are number of VM instances that are

running rather than executor nodes, and number of fetched

web documents.

In Fig 7, the results of executing these experiments show the

outcomes of executing on multi-VMs (multiple virtual

machines) on “Amazon Cloud Computing”. This experiment

is conducted five times, in stages from one instance to five

instances.

Fig 7: Proposed Crawler on Amazon Cloud Computing

The experiments using cloud computing test bed composed of

parameters the first one is the number of the virtual machine

in the platform cloud computing, and the second one is the

number of pages that should be crawled in the cloud. As in

Fig 7, the horizontal axis is the number of crawled pages, the

colored lines each one represents a case of running the

experiment with a specific number of nodes from executors,

and the vertical axis represents the time spent to complete the

crawling processes. The experimental results show that the

time of each case was reduced by rising number of the virtual

machine in the cloud. By increasing the number of instances

in cloud the time enhancement decreases. In case of 300 pages

the time of crawling in 1, 2, 3, 4 and 5 is 588.957, 326.194,

216.759, 176.699 and 153.045 respectively. The decreasing

rate in these experiments is also decreased the decreasing rate

of 1 and 2 nodes are 1.805, 2 and 3 is 1.5048, 3 and 4 is

1.2267, and 4 and 5 is 1.15456. The decreasing rate decrease

till become one that means there is no enhancement in the

time.

We calculated the average of the crawling time for each case

in the grid-based crawler and the Cloud-based crawler, and

created a comparison of average crawling time in the two

paradigms. There is a clear difference between the time of the

grid-based crawler and the Cloud-based crawler as showed in

the graph of Fig 8, where the Cloud-based crawler gives a

better performance through less time than the grid-based

crawler time.

The graph in Fig 9 represents the statistics of URLs gathered

in cases of crawl which the URLs detected in each one were

nearer together, because number of crawled documents were

fixed.

Fig 8: Averages of crawling times in the two proposed web

crawlers

Fig 9: Number of detected URLs using Cloud - based

Crawlers

Also we measured the number of domains that were accessed

in every case of crawl. The numbers of domains in each case

are nearer together, because numbers of web document in all

cases were fixed. Although the small difference is explained

by the reason mentioned before. The graph displayed in Fig

10 represents the domains accessed using the Cloud-based

crawlers.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50 100 150 200 250 300

N
u

m
b

er
 U

R
Ls

Number Pages

1 VM 2 VM 3 VM 4 VM 5 VM

MJCIS Vol. 15 No.1 Jun 2019

10

Fig 10: Statistics of accessed web-domains using Cloud-based

Crawlers

We measure the size of gathered web documents in all cases

of crawling. Also these measured sizes are closer in each case,

due to the fixed number of web documents in every case, and

the small variances due to the reasons mentioned previously.

The graph in Fig 11 represents the sizes of crawled pages in

the Cloud-based crawlers.

Fig 11: Sizes of fetched pages in Cloud-based Crawlers

The response time is the consumed time between the start of

transmitting http request and receive the http response for the

requested web page [34]. Two factors affect the response

time. The first one is the network delay and the second is the

server side latency. Latency time of server side is the time

took to produce the http response since the request comes to

the server [35]. Therefore the response time is measured in

cases Cloud-based crawlers.

The average of the response time is computed for each case in

the grid-based crawler and the Cloud-based crawler. The

comparison between response time in grid-based crawler and

Cloud-based crawler is shown in Fig 12. As showed in the

graph of Fig 12, there is a clear difference between the

response time of the grid-based crawler and the Cloud-based

crawler. This also insures that the Cloud-based crawler is

better than the Grid-based crawler.

Fig 12: Average of response time in Grid-based and Cloud-

based crawlers

In the grid-based crawler, crawling time is categorized into

two time, the processing time in the grid manager and the

processing time in the grid nodes. So, crawling time in the

grid-based crawler is enhanced by dividing time of the grid

node by number of nodes in the grid which these times are the

fetching, parsing, extracting URLs time. But in the cloud-

based crawler, the time of crawling at all is divided by the

number of crawling instances in the cloud. So, the cloud-

based crawler has a better time enhancement than grid-based

crawler, and this proved by the crawling time in Fig 8 and the

response time in Fig 12.

5. CONCLUSIONS AND FUTURE WORK
This paper introduced an architecture for the crawling which

this architecture is based on cloud computing and its features

such as extendibility, scalability, dynamism, and resource

provisioning on demand. To show the power of the cloud

computing, we proposed another architecture for the web

crawler over grid computing as another type of computing

paradigm. Grid computing and cloud computing are two

paradigms of distributed computing, but each one has its

features that affects the performance of the web crawler.

Therefore, two architectures design are different where each

one tries to adapt web crawler to environment nature. In this

article, we showed that cloud-based architecture performance

is superior to grid-based architecture through measurements

for the time of crawling and the response time for each one.

MJCIS Vol. 15 No.1 Jun 2019

11

Our future work will be presenting the services to be

configured in web crawling for example focused crawler to

crawl a certain region, a restricted field, or a definite

language. The service descriptions can be given as input

constraints to this service.

6. REFERENCES
[1] M. Kobayashi and K. Takeda. “Information retrieval on the web”, Journal

ACM Computing Surveys, Volume 32 Issue 2, Pages 144-173, June

2000.

[2] M. d. Kunder. "Daily Estimated Size of the World Wide Web," 26

September 2016. [Online]. Available:

http://www.worldwidewebsize.com/. [Accessed 26 September 2016].

[3] C. D. Manning, P. Raghavan, and H. Schutze. Book: “Introduction to

Information Retrieval”, CAMBRIDGE UNIVERSITY PRESS, 2009.

[4] J. Arguello, F. Diaz, J. Callan and J. F. Crespo. Sources of evidence for

vertical selection. In: 32nd International conference on Research and

development in Information Retrieval, SIGIR’09 pp. 315--322, ACM,

New York, USA, 2009.

[5] M. E. ElAraby, M. M. Sakre, M. Z. Rashad and O. Nomir. "Crawler

Architecture using Grid Computing," International Journal of Computer

Science & Information Technology, vol. 4, no. 3, pp. 113-127, 2012.

[6] B. Kahanwal and T. P. Singh. “The Distributed Computing Paradigms:

P2P, Grid, Cluster, Cloud, and Jungle”, International Journal of Latest

Research in Science and Technology, Vol. 1, No. 2, pp. 183-187, 2012.

[7] I. Foster, C. Kesselman, J. M. Nick and S. Tuecke. “The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems

Integration”, Global Grid Forum, June 22, 2002.

[8] F. Berman, G. Fox and T. Hey. Book: “Grid Computing: Making the

Global Infrastructure a Reality”, Vol. 2. John Wiley and sons, March

2003.

[9] D. Garlasu, V. Sandulescu, I. Halcu, G. Neculoiu, O. Grigoriu, M.

Marinescu and V. Marinescu. “A big data implementation based on Grid

computing”, Roedunet International Conference (RoEduNet), 17-19 Jan.

2013.

[10] I. Foster and C. Kesselman. The Grid2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 1999.

[11] D. Leaf. "The NIST Cloud Computing Project," 2 February 2011.

[Online]. Available: http://www.nist.gov/itl/csd/Cloud-020111.cfm.

[Accessed 4 March 2016].

[12] P. Sasikala. "Research challenges and potential green technological

applications in Cloud," Int. J. Cloud Computing, vol. 2, no. 1, pp. 1-19,

2013.

[13] R. Moreno-Vozmediano, R. S. Montero and I. M. Llo. "Key Challenges

in Cloud Computing: Enabling the Future Internet of Services," IEEE

Internet Computing, vol. 17, no. 4, pp. 18-25, 2013.

[14] Bass, Clements, and Kazman. “Software Architecture in Practice”,

Addison-Wesley 1997.

[15] A. Bertolino, P. Inverardi and H. Muccini. “Software architecture-based

analysis and testing: a look into achievements and future challenges”,

Computing, Springer, Volume 95, Issue 8, pp 633–648, August 2013.

[16] C. Chapman, W. Emmerich, and F. G. Márquez. “Software architecture

definition for on-demand Cloud provisioning”, Cluster Computing,

Volume 15, Issue 2, pp 79–100, June 2012.

[17] M. Bahrami and M. Singhal. "DCCSOA: A Dynamic Cloud Computing

Service-Oriented," in Proceedings of 16th IEEE International Conference

on Information Reuse and Integration, San Francisco, USA, 2015.

[18] H. D. Mustafa, S. N. Merchant, U. B. Desai and B. M. Baveja.

Introduction. In: Green Symbiotic Cloud Communications, pp. 1-9.

Springer, Singapore, 2017.

[19] J. Edwards, K. McCurley and J. Tomlin, "An adaptive model for

optimizing performance of an incremental web crawler", Proceedings of

the 10th international conference on World, 2001.

[20] J. M. Hsieh, S. D. Gribble and H. M. Levy. "The Architecture and

Implementation of an ExtensibleWeb Crawler", in NSDI'10 (the 7th

USENIX conference on Networked systems design and implementation),

CA, USA, 2010.

[21] I. Foster, C. Kesselman and S. Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations, International Journal of High Performance

Computing Applications Fall 2001 15: pp. 200-222, 2001.

[22] M. Minsky and S. A. Papert. “Perceptrons: An introduction to

computational geometry”. MIT press, 2017.

[23] M. A. Akyol, M. O. Gökalp, K. Kayabay, P. E. Eren and A. Koçyiğit. “A

Context Aware Notification Architecture Based on Distributed Focused

Crawling in the Big Data Era”, In European, Mediterranean, and Middle

Eastern Conference on Information Systems (pp. 29-39). Springer, Cham,

September, 2017.

[24] K. Cerbioni, E. Palanca, A. Starita, F. Costa and P. Frasconi. “A GRID

FOCUSED COMMUNITY CRAWLING ARCHITECTURE FOR

MEDICAL INFORMATION RETRIEVAL SERVICES”, 2nd Int. Conf.

on Conf. on Computational Intelligence in Medicine and Healthcare,

CIMED, 2005.

[25] M. Ben-Mubarak; A. Hasni and I. Chai. "Multi Agent System-based

crawlers for Virtual Organizations ", IEEE International Conference of

Distributed Frameworks for Multimedia Applications, May 2006.

[26] A. Guerriero, F. Ragni and C. Martines. "A dynamic URL assignment

method for parallel web crawler", IEEE International Conference of

CIMSA, on pages 119 – 123, Sept. 2010.

[27] J. Song, D. Choi and Y. Lee. " OGSA-DWC: A Middleware for Deep

Web Crawling Using the Grid ", IEEE Fourth International Conference of

eScience, on pages 370 - 371, Dec. 2008.

[28] B. B. Cambazoglu, E. Karaca, T. Kucukyilmaz, A. Turk and C. Aykanat.

" Architecture of a grid-enabled Web search engine", Available online 11

December 2006, Information Processing and Management number 43 on

pages 609–623, 2007.

[29] P. Mika and G. Tummarello. "Web Semantics in the Clouds", IEEE

Intelligent Systems, vol. 23, no. 5, pp. 82 - 87, Oct. 2008.

[30] M. Bahrami, M. Singhal and Z. Zhuang. "A Cloud-based web crawler

architecture", 18th International Conference in Intelligence in Next

Generation Networks (ICIN), Paris, Feb. 2015.

[31] N. Krishnadas. “Designing a Grid Computing Architecture: A Case Study

of Green Computing Implementation Using SAS®”, SAS Global Forum

2011 Systems Architecture and Administration, Indian Institute of

Management, Kozhikode, Kerala, India, Paper 366-2011.

[32] A. Luther, R. Buyya, R. Ranjan and S. Venugopal. “Alchemi: A. NET-

based Enterprise Grid Computing System”. In International Conference

on Internet Computing, pp. 269-278, June 2005.

[33] "AWS Amazon", [Online]. Available: https://console.aws.amazon.com/.

[Accessed 3 October 2016].

[34] N. Ye, X. Li, T. Farley and X. Xu. "Job scheduling methods for reducing

waiting time variance", Computers & Operations Research, Elsevier Ltd.,

vol. 34, no. 10, pp. 3069–3083, October 2007.

[35] R. Rajamony and M. Elnozahy. "Measuring Client-Perceived Response

Times on the WWW", USENIX Symposium on Internet Technologies

and Systems (USITS), vol. 3, March 2001.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dan%20Garlasu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Virginia%20Sandulescu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ionela%20Halcu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Giorgian%20Neculoiu.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Oana%20Grigoriu.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mariana%20Marinescu.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mariana%20Marinescu.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Viorel%20Marinescu.QT.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6507378
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6507378
http://link.springer.com/journal/607/95/8/page/1
http://link.springer.com/journal/10586/15/2/page/1
https://scholar.google.com.eg/citations?user=7CohtIMAAAAJ&hl=en&oi=sra
https://scholar.google.com.eg/citations?user=ymwKqZsAAAAJ&hl=en&oi=sra
https://scholar.google.com.eg/citations?user=x-8b-ZkAAAAJ&hl=en&oi=sra
https://scholar.google.com.eg/citations?user=If8AWhgAAAAJ&hl=en&oi=sra
https://scholar.google.com.eg/citations?user=VNdOMvoAAAAJ&hl=en&oi=sra
https://scholar.google.com.eg/citations?user=xth-TH4AAAAJ&hl=en&oi=sra
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/34/10

